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Ovidiu I Pâţu1,3, Vladimir E Korepin1 and Dmitri V Averin2

1 C N Yang Institute for Theoretical Physics, State University of New York at Stony Brook,
Stony Brook, NY 11794-3840, USA
2 Department of Physics and Astronomy, State University of New York at Stony Brook,
Stony Brook, NY 11794-3800, USA

E-mail: ipatu@grad.physics.sunysb.edu, korepin@max2.physics.sunysb.edu
and dmitri.averin@stonybrook.edu

Received 5 March 2008, in final form 5 May 2008
Published 28 May 2008
Online at stacks.iop.org/JPhysA/41/255205

Abstract
We have obtained a determinant representation for the time- and temperature-
dependent field–field correlation function of the impenetrable Lieb–Liniger
gas of anyons through direct summation of the form factors. In the static case,
the obtained results are shown to be equivalent to those that follow from the
anyonic generalization of Lenard’s formula.

PACS numbers: 02.30.Ik, 05.30.Pr

1. Introduction and statement of results

This is the second paper in a series that provides a comprehensive treatment of the properties
of temperature-dependent correlation functions of one-dimensional (1D) impenetrable free
anyons, based on the methods developed for impenetrable bosons [1]. The anyonic model
considered in this work can be viewed as a generalization to an arbitrary statistics parameter
κ of the model of impenetrable bosons obtained from the Bose gas with repulsive δ-function
interaction [1, 2] in the limit of infinitely large coupling constant (for other anyonic extensions
of well-known models see [3–5]). This model, which we call the Lieb–Liniger gas of anyons,
was formulated in this form by Kundu [6], clarified in [7, 8] and further studied in [9–14]. In
the bosonic case, the first step in the analysis of the correlation functions is the derivation of the
Fredholm-determinant representation for these functions [15]. With the help of the determinant
representation, a classical integrable system characterizing the correlation functions can be
constructed as in [16, 17], leading to the short-distance and low-density expansions of the
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correlators. The large-distance asymptotics are then obtained by the inverse scattering method
for the integrable system and the solution of the associated matrix Riemann–Hilbert problem
[18]. These results will be presented in future publications. The purpose of this work is
to derive the Fredholm-determinant representation for the temperature-dependent correlation
functions in the case of anyons, and to prove the equivalence of this representation with the
anyonic generalization of Lenard’s formula [19].

The results of this work can be summarized as follows. One defines free propagators

e(λ|t, x) = eitλ2−ixλ, G(t, x) =
∫ ∞

−∞
e(λ|t, x) dλ, (1)

and the function

E(µ|t, x) = P.V.
∫ ∞

−∞
dλ

e(λ|t, x)

λ − µ
+ e(µ|t, x)π tan

(πκ

2

)
, (2)

where P.V. denotes the Cauchy principal value. In terms of these functions, the time- and
temperature-dependent field–field correlator of impenetrable 1D anyons is〈
�A(x2, t2)�

†
A(x1, t1)

〉
T

= eiht21

(
1

2π
G(t12, x12) +

∂

∂α

)
det(1 + V̂T )

∣∣∣∣
α=0

, (3)

where xab = xa − xb, tab = ta − tb, a, b = 1, 2, and det(1 + V̂T ) is the Fredholm determinant
of the integral operator with the kernel

VT (λ, µ) = cos2(πκ/2) exp

{
− i

2
t12(λ

2 + µ2) +
i

2
x12(λ + µ)

}√
ϑ(λ)ϑ(µ)

×
[
E(λ|t12, x12) − E(µ|t12, x12)

π2(λ − µ)
− α

2π3
E(λ|t12, x12)E(µ|t12, x12)

]
, (4)

which acts on an arbitrary function f (µ) as

(VT f ) (λ) =
∫ ∞

−∞
VT (λ, µ)f (µ) dµ. (5)

In equation (4), ϑ(λ) ≡ ϑ(λ, T , h) is the Fermi-distribution function at temperature T and
chemical potential h,

ϑ(λ, T , h) = 1

1 + e(λ2−h)/T
. (6)

Introducing integral operators K̂T and Â±
T which act on the entire real axis and have kernels

KT (λ,µ) =
√

ϑ(λ)
sin x(λ − µ)

λ − µ

√
ϑ(µ), (7)

and

A±
T (λ, µ) =

√
ϑ(λ) e∓ix(λ+µ)

√
ϑ(µ). (8)

we obtain the static, i.e. equal-time, correlators as〈
�

†
A(x)�A(−x)

〉
T

= 1

2π
Tr
[
(1 − γ K̂T )−1Â+

T

]
det(1 − γ K̂T )|γ=(1+e+iπκ )/π , (9)

and〈
�

†
A(−x)�A(x)

〉
T

= 1

2π
Tr
[
(1 − γ K̂T )−1Â−

T

]
det(1 − γ K̂T )|γ=(1+e−iπκ )/π . (10)

Here Tr[f (x, y)] ≡ ∫
f (x, x) dx, and due to the nonconservation of parity the corrrelator〈

�
†
A(x)�A(−x)

〉
T

is different from
〈
�

†
A(−x)�A(x)

〉
T

.
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The paper is organized as follows. Section 2 introduces the Lieb–Liniger gas of anyons
and presents the Bethe Ansatz eigenfunctions, Bethe equations, the ground state and the
thermodynamics of anyons in the impenetrable limit. In section 3, we compute the form
factors and express the field correlator as a Fredholm determinant. Section 4 presents the
proof of the equivalence of equations (9) and (10) to the anyonic version of Lenard’s formula
[19]. Some technical details of the calculations are relegated to the appendices.

2. The Lieb–Liniger gas of impenetrable anyons

The second-quantized Hamiltonian of the Lieb–Liniger gas of 1D anyons is

H =
∫ L/2

−L/2
dx
([

∂x�
†
A(x)

]
[∂x�A(x)] + c�

†
A(x)�

†
A(x)�A(x)�A(x) − h�

†
A(x)�A(x)

)
, (11)

where c > 0 is the coupling constant, L is the length of normalization interval and h is the
chemical potential. The canonical Heisenberg fields

�
†
A(x, t) = eiHt�

†
A(x) e−iHt , �A(x, t) = eiHt�A(x) e−iHt (12)

obey the anyonic equal-time commutation relations

�A(x1, t)�
†
A(x2, t) = e−iπκε(x1−x2)�

†
A(x2, t)�A(x1, t) + δ(x1 − x2), (13)

�
†
A(x1, t)�

†
A(x2, t) = eiπκε(x1−x2)�

†
A(x2, t)�

†
A(x1, t), (14)

�A(x1, t)�A(x2, t) = eiπκε(x1−x2)�A(x2, t)�A(x1, t), (15)

where κ is the statistics parameter, which we assume to be rational (this is necessary in order
for equation (39) to hold), and ε(x) = x/|x|, ε(0) = 0. The Fock vacuum is defined as usual
by

�A(x)|0〉 = 0 = 〈0|�†
A(x), 〈0|0〉 = 1. (16)

The eigenstates |�N 〉 of the Hamiltonian are

|�N 〉 = 1√
N !

∫ L/2

−L/2
dz1 · · ·

∫ L/2

−L/2
dzN χN(z1, . . . , zN |λ1, . . . , λN)�

†
A(zN) · · · �†

A(z1)|0〉,
(17)

where quantum-mechanical wavefunctions have the property of anyonic exchange statistics:

χN(. . . , zi, zi+1, . . .) = eiπκε(zi−zi+1)χN(. . . , zi+1, zi, . . .). (18)

Note that the sign in front of the statistical phase in this expression (+iπκ or −iπκ) depends
on the choice of ordering of the creation operators in the definition of the eigenstates (17). The
order of these operators adopted in equation (17) (leading to the phase +iπκ): the particle with
the first coordinate z1 created first, then z2, etc, is convenient [7] for the subsequent calculation
of the form factors.

In this paper, we limit our discussion to the case of infinitely strong interaction, c → ∞,
which corresponds to impenetrable anyons. In general, the eigenfunctions χN are [8]

χN = e+i πκ
2

∑
j<k ε(zj −zk)√

N !
∏

j>k[(λj − λk)2 + c′2]

∑
π∈SN

(−1)π ei
∑N

n=1 znλπ(n)

×
∏
j>k

[λπ(j) − λπ(k) − ic′ε(zj − zk)], (19)

3
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where c′ ≡ c/ cos(πκ/2), and reduce for impenetrable anyons to a simpler form:

χN = e+i πκ
2

∑
j<k ε(zj −zk)

√
N !

∏
j>k

ε(zj − zk)
∑
π∈SN

(−1)π ei
∑N

n=1 znλπ(n) . (20)

Here SN is the group of permutations of N elements and (−1)π is the sign of the permutation.
The energy eigenvalues

H |�N 〉 = E|�N 〉
are given by the sum of effective single-particle contributions:

E =
N∑

i=1

ε(λj ), with ε(λ) = λ2 − h. (21)

The individual momenta λj depend on the boundary conditions imposed on the
wavefunctions. In contrast to particles of integer statistics, wavefunctions of the anyons
satisfy different quasi-periodic boundary conditions in their different arguments, the difference
resulting from the statistical phase shift 2πκ [7, 8]. In general, the quasi-periodic boundary
conditions also include the external phase shift η (we will consider η = 2π× rational), so that
the boundary conditions on the wavefunctions (20) are:

χN(−L/2, z2, . . . , zN) = e−iηχN(L/2, z2, . . . , zN),

χN(z1,−L/2, . . . , zN) = ei(2πκ−η)χN(z1, L/2, . . . , zN),

...

χN(z1, z2, . . . ,−L/2) = ei(2π(N−1)κ−η)χN(z1, z2 . . . , L/2). (22)

The difference in the boundary conditions for different arguments of χN makes it possible, in
general, to impose the condition without the statistical phase shift on any of the arguments zj .
The precise form of the Bethe equations for the momenta λj in wavefunction (19) depends on
a specific choice of the boundary conditions. The choice (22), in which the first coordinate
z1 does not have the statistical shift under its boundary condition, gives rise to the Bethe
equations which include the full statistical contribution πκ(N − 1) to the momentum shift of
each of the anyons produced by the N − 1 other anyons in the system [8]:

eiλj L = eiη
N∏

k=1,k 
=j

(
λj − λk + ic′

λj − λk − ic′

)
, (23)

where η = η − πκ(N − 1). Similarly to the wavefunctions, the general Bethe equations (23)
are simplified in the impenetrable limit c → ∞:

eiλj L = (−1)N−1 eiη. (24)

2.1. Structure of the ground state

We assume that the ground state of the gas contains N anyons, and take, for convenience, N to
be even, although this does not affect our final results. We denote the momenta of the particles
in the ground state as µj , where j = 1, . . . , N , and introduce the notation {[· · ·]} such that

{[x]} = γ, if x = 2π × integer + 2πγ, γ ∈ (−1, 1). (25)

The Bethe equations (24) then give the momenta µj :

µj = 2π

L

(
j − N + 1

2

)
+

2πδ

L
, j = 1, . . . , N0, (26)

4
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where δ = {[η]}. In the thermodynamic limit L → ∞, N → ∞, N/L = D, momenta of the
particles fill densely the Fermi sea [−q, q], where q = √

h is the Fermi momentum and the
gas density is D = q/π .

2.2. Thermodynamics

The thermodynamics of the Lieb–Liniger anyonic gas was considered in [10, 11]. Similarly
to the structure of the ground state, all local thermodynamic characteristics in the case of
impenetrable anyons are equivalent to those of the free fermions. At non-vanishing temperature
T, the quasiparticle distribution is given by the Fermi weight (6), and the density and energy
are

D = 1

2π

∫ ∞

−∞
ϑ(λ, h, T ) dλ, E = 1

2π

∫ ∞

−∞
λ2ϑ(λ, h, T ) dλ. (27)

The density increases monotonically as a function of the chemical potential h. At T = 0, we
have D = 0 for h � 0, and 0 < D < ∞ if 0 < h < ∞. At non-vanishing temperature, the
density is zero for h = −∞ and monotonically increases with h for −∞ < h < ∞.

3. The time-dependent field–field correlator

In our previous paper [19], we have derived the anyonic generalization of the Lenard formula,
which for impenetrable free anyons, is an expansion of the anyonic reduced density matrices
in terms of the reduced density matrices of free fermions. In the simplest case, the correlator(

x1

∣∣ρa
1

∣∣x2
) = 〈�†

A(x2)�A(x1)
〉
T

(28)

is the first Fredholm minor of an integral operator, whose kernel is the Fourier transform
of the Fermi weight (6). In this section, we obtain the time dependent generalization of
this result. Our approach will be based on the following considerations. We start with the
zero-temperature field correlator

〈
�A(x2, t2)�

†
A(x1, t1)

〉
N

=
〈
�(µ1, . . . , µN)|�A(x2, t2)�

†
A(x1, t1)|�(µ1, . . . , µN)

〉
〈�(µ1, . . . , µN)|�(µ1, . . . , µN)〉 , (29)

where the wavefunctions are taken to be normalized as

〈�(µ1, . . . , µN)|�(µ1, . . . , µN)〉 = LN, (30)

and µ1, . . . , µN are the momenta in the ground state (26). Using the resolution of identity for
the Hilbert space of N + 1 particles

1 =
∑

all{λ}N+1

|�(λ1, . . . , λN+1)〉〈�(λ1, . . . , λN+1)|
〈�(λ1, . . . , λN+1)|�(λ1, . . . , λN+1)〉 , (31)

where, according to (30),

〈�(λ1, . . . , λN+1)|�(λ1, . . . , λN+1)〉 = LN+1,

and the sum is over all possible solutions of the Bethe equations with N + 1 particles, we have〈
�A(x2, t2)�

†
A(x1, t1)

〉
N

= 1

L2N+1

∑
all{λ}N+1

〈�N({µ})|�A(x2, t2)|�N+1({λ})〉

× 〈�N+1({λ})|�†
A(x1, t1)|�N({µ})〉. (32)

5
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Defining the form factors

FN+1,N (x, t) = 〈�N+1({λ})|�†
A(x, t)|�N({µ})〉,

F ∗
N+1,N (x, t) = 〈�N({µ})|�A(x, t)|�N+1({λ})〉, (33)

we can rewrite equation (32) as〈
�A(x2, t2)�

†
A(x1, t1)

〉
N

= 1

L2N+1

∑
all{λ}N+1

F ∗
N+1,N (x2, t2)FN+1,N (x1, t1). (34)

Equation (34) means that in order to find the dynamic field correlator, we need to compute the
form factors and sum over all of them. After the summation, one can take the thermodynamic
limit. In general, such a summation of form factors is extremely difficult. The main
simplification which makes it possible to perform this summation in the model of anyons
we consider here, is the fact that, similarly to the problem of impenetrable bosons [1, 15], the
local thermodynamic properties of particles with δ-function interaction are identical to those
of free fermions regardless of the actual exchange statistics. Finally, the finite-temperature
correlator can be obtained from the zero-temperature result using the standard argument
developed for the Bose gas (see, e.g., appendix 13.1 of [1]), which is also applicable in the
case of anyons.

3.1. Form factors

As a first step in carrying out the program outlined above, we compute the form factors. In
definition (33) of the form factors, the eigenstates |�N({µ})〉, |�N+1({λ})〉 have, respectively,
N and N + 1 particles. Although the set {µ} represents in (33) momenta in the ground state
of N particles, our calculation below is valid also when |�N({µ})〉 is not the ground state. As
before, we assume for convenience that N is even. We denote by {µj } the momenta of the
anyons in the N-particle eigenstate, and by {λj } the momenta in the N + 1 eigenstate.

Using the definition (17) for the eigenstates with N and N + 1 anyons

|�N({µ})〉 = 1√
N !

∫
dNzχN(z1, . . . , zN |{µ})�†

A(zN) . . . �
†
A(z1)|0〉,

〈�N+1({λ})| = 1√
N + 1!

∫
dN+1y〈0|�A(y1) . . . �A(yN+1)χ

∗
N+1(y1, . . . , yN+1|{λ})

one can write the form factor as

FN+1,N (x, 0) = 1√
(N + 1)!N !

∫
dN+1y dNzχ∗

N+1(y1, . . . , yN+1|{λ})χN(z1, . . . , zN |{µ})·
(35)〈0|�A(y1) · · · �A(yN+1)�

†
A(x)�

†
A(zN) · · · �†

A(z1)|0〉.
A direct application of the anyonic commutation relation (13) and equation (16) described in
more detail in appendix A, reduces this expression to

FN+1,N (x, 0) = 〈�N+1|�†
A(x)|�N

〉
=

√
N + 1

∫
dNz χ∗

N+1(z1, . . . , zN , x|{λ})χN(z1, . . . , zN |{µ}). (36)

An important feature of equation (36) is that the order of the creation operators chosen in
equation (17) makes the ‘free’ coordinate x in (36) the last argument of the wavefunction
χN+1. This ensures that both wavefunctions, χN and χN+1, have the same phase shifts (22) at
the boundary of the normalization interval in all other variables zj . Since these phase shifts
are canceled in equation (36), the expression under the integrals over zj is periodic in each of

6
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the variables [7]. This feature is the necessary consistency condition for the Hilbert spaces of
anyon wavefunctions with different numbers of particles, and is important in what follows for
the appropriate calculation of the form factors (36).

The sets of momenta {µj } and {λj } in the wavefunctions χN and χN+1 in (36) are
determined by the Bethe equations (24) as

µj = 2π

L

(
mj +

1

2

)
+

2πδ

L
, δ = {[η − πκ(N − 1)]}, j = 1, . . . , N,mj ∈ Z, (37)

λj = 2π

L
nj +

2πδ′

L
, δ′ = {[η − πκN ]}, j = 1, . . . , N + 1, nj ∈ Z. (38)

These equations show that

λj − µk = 2π

L

(
l − κ + 1

2

)
, l ∈ Z, (39)

which means that λj and µk never coincide except in the trivial case κ = 1, when we have a
gas of non-interacting fermions. In all other situations, λj and µk are different. This difference
between them comes from the phase shift due to the hard-core condition on the added particle
described by the factor 1/2 in (39), and the extra anyonic statistical phase added to the anyon
system together with the particle [7]. This difference between λj and µk plays an important
role in the following calculations. Using the identity

e+i πκ
2 ε(x−y)ε(y − x) = cos(πκ/2)ε(y − x) − i sin(πκ/2), (40)

we can rewrite the anyonic wavefunction (20) as

χN(z1, . . . , zN |{µ}) =
∏

j>k[cos(πκ/2)ε(zj − zk) − i sin(πκ/2)]√
N !

∑
π∈SN

(−1)π ei
∑N

n=1 znµπ(n) .

(41)

Using this expression for both of the wavefunctions in (36) we obtain

FN+1,N (x, 0) = 1

N !

∑
π∈SN+1

∑
σ∈SN

(−1)π+σ e−ixλπ(n+1)

∫ L/2

−L/2

N∏
n=1

dzn[cos(πκ/2)ε(x − zn)

+ i sin(πκ/2)] e−i
∑N

n=1 zn(λπ(n)−µσ(n)). (42)

Integration by parts in this equation produces the boundary terms in the following form:

e−izn(λπ(n)−µσ(n))

−i(λπ(n) − µσ(n))
(cos(πκ/2)ε(x − zn) + i sin(πκ/2))

∣∣∣∣
zn=L/2

zn=−L/2

= e−i πκ
2 e−i L

2 (λπ(n)−µσ(n))

i(λπ(n) − µσ(n))
(1 + e+iπκ eiL(λπ(n)−µσ(n))). (43)

All these terms vanish due to equation (39). Then, using the relation
dε(x − zn)

dzn

= −2δ(x − zn), (44)

we obtain the following expression for the form factors:

FN+1,N (x, 0) = [2i cos(πκ/2)]N

N !
exp

⎧⎨
⎩ix

⎡
⎣ N∑

j=1

µj −
N+1∑
j=1

λj

⎤
⎦
⎫⎬
⎭

×
∑

π∈SN+1

∑
σ∈SN

(−1)π+σ

N∏
j=1

1

λπ(j) − µσ(j)

. (45)

7
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This expression differs from the corresponding result for impenetrable bosons [1, 15]
by the spectrum of the momenta which now include the statistical shift, and by the overall
[cos(πκ/2)]N factor. For κ = 0, both differences disappear, and equation (45) reproduces, as
should be, the case of the Bose gas. We transform this equation following the corresponding
steps for bosons [1, 15]. One can see directly that the sums over permutations in (45) can be
written in the form of a determinant:

1

N !

∑
π∈SN+1

∑
σ∈SN

(−1)π+σ

N∏
j=1

1

λπ(j) − µσ(j)

=
(

1 +
∂

∂α

)
detN

(
Mα

jk

)∣∣∣∣
α=0

, (46)

with

Mα
jk = 1

λj − µk

− α

λN+1 − µk

, j, k = 1, . . . , N, (47)

reducing equation (45) to

FN+1,N (x, 0) = (2i cos(πκ/2))N exp

⎧⎨
⎩ix

⎡
⎣ N∑

j=1

µj −
N+1∑
j=1

λj

⎤
⎦
⎫⎬
⎭
(

1 +
∂

∂α

)
detN

(
Mα

jk

)∣∣∣∣
α=0

.

(48)

The determinant part of this equation can also be written as(
1 +

∂

∂α

)
detN

(
Mα

jk

)∣∣
α=0 =

∑
π∈SN+1

(−1)π
N∏

j=1

1

λπ(j) − µj

, (49)

as one can see directly from the LHS of (46) by noting that due to the permutations π of λj ,
all permutations of µj give identical contributions to the sum over π ∈ SN+1.

Alternatively, one can introduce a fictitious momentum µN+1, and obtain the following
representation [20] of the form factor in terms of this momentum:

FN+1,N (x, 0) = (2i cos(πκ/2))N

× exp

⎧⎨
⎩ix

⎡
⎣ N∑

j=1

µj −
N+1∑
j=1

λj

⎤
⎦
⎫⎬
⎭ lim

µN+1→∞

[
−µN+1detN+1

(
1

λj − µk

)]
, (50)

where detN+1(ajk) is the determinant of the (N + 1) × (N + 1) matrix with elements ajk. We
will not be using this representation explicitly below.

The time-dependent form factors can be obtained from the timeless form (48) using the
following simple relations:

e−iHt |�N({µ})〉 = e−it
∑N

j=1(µ
2
j −h)|�N({µ})〉, (51)

and

〈�N({λ})| eiHt = eit
∑N+1

j=1 (λ2
j −h)〈�N({λ})|. (52)

Combining the exponential factors in these expressions with those in equation (48), we arrive
at the final result for the time-dependent form factor:

FN+1,N (x, t) = (2i cos(πκ/2))N e−iht

(
N+1∏
i=1

e(λi |t, x)

)⎛⎝ N∏
j=1

e∗(µj |t, x)

⎞
⎠

×
(

1 +
∂

∂α

)
detN

(
Mα

jk

)∣∣
α=0, (53)

8
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where we have introduced the function

e(λ|t, x) = eitλ2−ixλ, (54)

e∗(λ|t, x) is its complex conjugate, and Mα
jk is defined in (47). The form factor of the

annihilation operator �A(x, t) is obtained through complex conjugation

〈�N({µ})|�A(x, t)|�N+1({λ})〉 = F ∗
N+1,N (x, t). (55)

3.2. Summation of the form factors

Using equations (53) and (55), we write the field correlator (34) as a sum over intermediate
momenta {λ}:
〈
�A(x2, t2)�

†
A(x1, t1)

〉
N

=
∑

all {λ}N+1

(2 cos(πκ/2))2N

L2N+1
eiht21

(
N+1∏
i=1

e∗(λi |t21, x21)

)

×
⎛
⎝ N∏

j=1

e(µj |t21, x21)

⎞
⎠(1 +

∂

∂α

)
detN

(
Mα

jk

)∣∣
α=0

×
(

1 +
∂

∂β

)
detN

(
M

β

jk

)∣∣
β=0, (56)

with the notations xab = xa − xb, tab = ta − tb, a, b = 1, 2. The matrix M
β

jk here is the same
as (47) with α replaced by β. As was mentioned above, modulo the [cos(πκ/2)]2N factors
and the spectrum of momenta, equation (56) is identical to the expression for the bosonic field
correlators [1, 15]. This means that the summation process over {λ} is very similar, and we just
sketch the derivation here. Since we sum over all momenta {λ}, individual momenta λj are
equivalent up to permutation. This means that one of the two permutations of {λj } involved
in the definition of the two determinants in (56) produces coinciding terms, so that under the
sum over {λj }, one can replace one of the determinants, e.g., the second one, with

(N + 1)!
N∏

j=1

1

λj − µj

, (57)

obtaining〈
�A(x2, t2)�

†
A(x1, t1)

〉
N

= eiht21

⎛
⎝ N∏

j=1

e(µj |t21, x21)

⎞
⎠ 1

L

(
2 cos(πκ/2)

L

)2N

(N + 1)!

×
∑

all {λ}N+1

(
e∗(λN+1|t21, x21) +

∂

∂α

)
detN

(
e∗(λj |t21, x21)

(λj − µk)(λj − µj)

−α
e∗(λj |t21, x21)

(λj − µj)

e∗(λN+1|t21, x21)

(λN+1 − µj)

)∣∣∣∣
α=0

. (58)

The summation over the momenta {λj } can be done then independently over each λj inside the
determinant. Also, we transfer the factors e(µj |t21, x21) in (58) into the determinant splitting
them between the rows and columns, and use the formula

1

(λj − µk)

1

(λj − µj)
=
(

1

λj − µj

− 1

λj − µk

)
1

µj − µk

. (59)

9
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This gives the correlator as〈
�A(x2, t2)�

†
A(x1, t1)

〉
N

= eiht21

(
1

2π
GL(t12, x12) +

∂

∂α

)

× detN

[
δjkẼL(µk|t12, x12)e(µj |t21, x21) + e(µj |t2, x2)e

∗(µk|t1, x1) cos2(πκ/2)

×
(

2(1 − δjk)

πL(µj − µk)
(EL(µj |t12, x12) − EL(µk, t12, x12))

− α

Lπ2
EL(µj |t12, x12)EL(µk|t12, x12)

)]∣∣∣∣
α=0

, (60)

where we have defined the functions
1

2π
GL(t, x) = 1

L

∑
λ

e(λ|t, x), (61)

1

2π
EL(µk|t, x) = 1

L

∑
λ

e(λ|t, x)

λ − µk

, (62)

ẼL(µk|t, x) = 4 cos(πκ/2)2

L2

∑
λ

e(λ|t, x)

(λ − µk)2
, (63)

and λ = 2π
L

(Z + δ′) —see (38). Formula (60) is the final expression for the field correlator in
the ground state of N anyons on a finite interval with quasi-periodic boundary conditions.

3.3. Thermodynamic limit

In order to obtain the correlator in the thermodynamic limit, we need to compute the large-L
limit of the functions (61), (62) and (63). This is done in appendix B with the results

G(t, x) ≡ lim
L→∞

GL(t, x) =
∫ ∞

−∞
e(λ|t, x) dλ, (64)

E(µk|t, x) ≡ lim
L→∞

EL(µk|t, x) = P.V.
∫ ∞

−∞
dλ

e(λ|t, x)

λ − µk

+ e(µk|t, x)π tan
(πκ

2

)
, (65)

Ẽ(µk|t, x) ≡ lim
L→∞

ẼL(µk|t, x) = e(µk|t, x) +
2 cos2(πκ/2)

πL

∂

∂µk

E(µk|t, x). (66)

In the thermodynamic limit L,N → ∞ with D = N/L constant, the anyon momenta fill
densely the Fermi interval [−q, q], where q = √

h and D = q/π . In this case, the determinant
in the correlator (60) can be understood as the Fredholm determinant of an integral operator.
Indeed, for an arbitrary integral operator V̂ , whose action on a function f (λ) is defined by

(V̂ f )(λ) =
∫ b

a

V (λ, µ)f (µ) dµ, (67)

the associated Fredholm determinant is (see, e.g., [22])

det(1 + V̂ ) = lim
n→∞

∣∣∣∣∣∣∣∣∣

1 + ξV (λ1, λ1) ξV (λ1, λ2) · · · ξV (λ1, λn)

ξV (λ2, λ1) 1 + ξV (λ2, λ2) · · · ξV (λ2, λn)

...
...

. . .
...

ξV (λn, λ1) ξV (λn, λ2) · · · 1 + ξV (λn, λn)

∣∣∣∣∣∣∣∣∣
, (68)

10
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where ξ = (b − a)/n, λp − λp−1 = ξ and λ0 = a, λn = b. One can see directly that, in
the thermodynamic limit, the determinant part of equation (60) has the same structure with N
momenta µj separated by ξ = 2π/L filling the Fermi interval [−q, q]. This means that the
correlator can be expressed as〈
�A(x2, t2)�

†
A(x1, t1)

〉 = eiht21

(
1

2π
G(t12, x12) +

∂

∂α

)
det(1 + ˆ̃V 0)|α=0, (69)

where ˆ̃V 0 acts on an arbitrary function f (λ) as

( ˆ̃V 0f )(λ) =
∫ q

−q

Ṽ0(λ, µ)f (µ) dµ, (70)

and

Ṽ0(λ, µ) = cos2(πκ/2)e(λ|t2, x2)e
∗(µ|t1, x1)

×
[
E(λ|t12, x12) − E(µ|t12, x12)

π2(λ − µ)
− α

2π3
E(λ|t12, x12)E(µ|t12, x12)

]
. (71)

Performing the unitary transformation

V0(λ, µ) = exp

{
−i

(t1 + t2)

2
(λ2 − µ2) + i

(x1 + x2)

2
(λ − µ)

}
Ṽ0(λ, µ), (72)

with the property

det(1 + ˆ̃V 0) = det(1 + V̂0), (73)

we transform the kernel Ṽ0(λ, µ) (71) into the symmetric form:

V0(λ, µ) = cos2(πκ/2) exp

{
− i

2
t12(λ

2 + µ2) +
i

2
x12(λ + µ)

}

×
[
E(λ|t12, x12) − E(µ|t12, x12)

π2(λ − µ)
− α

2π3
E(λ|t12, x12)E(µ|t12, x12)

]
. (74)

Two observations are in order. First, one can check that the second term in (66) is obtained
from the first term in the square bracket of (74) in the limit λ → µ. Second, in the limit
κ → 0, equation (74) reproduces the known result [1, 15] for impenetrable bosons.

In the static case (t1 = t2), which is discussed in the following section, the kernel (74)
can be simplified further. One needs to distinguish two cases.

• x1 > x2. In this case,

E(λ|0, x12) = −iπ e−ix12λ[1 + i tan(πκ/2)], (75)

and the kernel (74) becomes

V +
0 (λ, µ) = − (1 + e+iπκ)

π

(
sin(x12(λ − µ)/2)

λ − µ

)
+

α

2π
e+iπκ exp

{
−i

x12

2
(λ + µ)

}
. (76)

• x1 < x2. In this case,

E(λ|0, x12) = iπ e−ix12λ[1 − i tan(πκ/2)], (77)

and

V −
0 (λ, µ) = (1 + e−iπκ)

π

(
sin(x12(λ − µ)/2)

λ − µ

)
+

α

2π
e−iπκ exp

{
−i

x12

2
(λ + µ)

}
. (78)

11
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We now extend the discussion to the situation of non-vanishing temperature T. The
temperature-dependent field correlator is defined as

〈
�A(x2, t2)�

†
A(x1, t2)

〉
T

= Tr
(
e−H/T �A(x2, t2)�

†
A(x1, t1)

)
Tr e−H/T

. (79)

According to the well-known argument developed for the Bose gas [1], this correlator can be
found as the mean value over any one of the ‘typical’ eigenfunctions �T of the Hamiltonian
which characterizes the given state of thermal equilibrium:

〈�T |�A(x2, t2)�
†
A(x1, t2)|�T 〉

〈�T |�T 〉 . (80)

This argument depends only on the general saddle-point approximation in the description of
the state of equilibrium, and also holds in the case of anyons. The further computation of
the field correlator based on equation (80) is similar to the zero-temperature case, the main
difference being the change of the measure of integration:∫ q

−q

dλ →
∫ ∞

−∞
dλϑ(λ, T , h) with ϑ(λ, T , h) = 1

1 + e(λ2−h)/T
. (81)

The final result for the temperature-dependent correlator is then〈
�A(x2, t2)�

†
A(x1, t1)

〉
T

= eiht21

(
1

2π
G(t12, x12) +

∂

∂α

)
det(1 + V̂T )

∣∣∣∣
α=0

, (82)

where the kernel of the integral operator V̂T is

VT (λ, µ) =
√

ϑ(λ)V0(λ, µ)
√

ϑ(µ),

= cos2(πκ/2) exp

{
− i

2
t12(λ

2 + µ2) +
i

2
x12(λ + µ)

}√
ϑ(λ)ϑ(µ)

×
[
E(λ|t12, x12) − E(µ|t12, x12)

π2(λ − µ)
− α

2π3
E(λ|t12, x12)E(µ|t12, x12)

]
, (83)

and the operator acts on an arbitrary function f (µ) as

(VT f ) (λ) =
∫ ∞

−∞
VT (λ, µ)f (µ) dµ. (84)

4. Equivalence with the Lenard formula

In the earlier paper [19], we obtained the anyonic generalization of the Lenard formula for the
equal-time field correlator or, equivalently, reduced density matrices of anyons. In the case of
the first reduced density matrix, the anyonic Lenard formula reads

(x|ρa
1 |x ′)± = 1

π
det

(
1 − γ θ̂±

T

∣∣∣∣xx ′

)∣∣∣∣
γ=(1+e±iπκ )/π

, (85)

where the kernel of the integral operators θ̂±
T is

θT (ξ − η) = 1

2

∫ ∞

−∞
dλ

ei(ξ−η)λ

1 + e(λ2−h)/T
, (86)

and their action on an arbitrary function is defined as(
θ̂±
T f
)
(ξ) =

∫
I±

θT (ξ − η)f (η) dη. (87)

12



J. Phys. A: Math. Theor. 41 (2008) 255205 O I Pâţu et al

In these expressions, the plus sign refers to the situation when x ′ > x and I+ = [x, x ′], and the
minus sign (–) to the situation when x ′ < x and I− = [x ′, x]. The resolvent kernels associated
with the kernel θT (x, y) acting on the intervals I± are denoted by �±

T (ξ, η) and satisfy the
equations:

�±
T (ξ, η) − (1 + e±iπκ)

π

∫
I±

θT (ξ − ξ ′)�±
T (ξ ′, η) dξ ′ = θT (ξ − η). (88)

One can rewrite equation (85) in terms of the resolvent kernel �T and the field correlator as
[19] 〈

�
†
A(x ′)�A(x)

〉
T ,± = 1

π
�±

T (x ′, x) det
(
1 − γ θ̂±

T

)∣∣
γ=(1+e±iπκ )/π

, (89)

where again, the plus sign refers to the case x ′ > x and the minus sign (–) to x < x ′. Next,
we show that equation (89) is reproduced by the results obtained in the previous section when
they are specialized to the equal-time correlators. We treat the two cases, x ′ > x and x ′ < x,
separately.

4.1. The static correlator
〈
�A(−x)�

†
A(x)

〉
T

Equations (54) and (64) show that in the static case

1

2π
G(0, x) = δ(x). (90)

Using this relation and equations (76) and (83), we see that the equal-time field correlator can
be written as〈
�A(−x)�

†
A(x)

〉
T

=
(

δ(2x) +
∂

∂α

)
det

(
1 − (1 + eiπκ)

π
K̂T + α

eiπκ

2π
Â+

T

)∣∣∣∣
α=0

, (91)

where K̂T and Â+
T are the integral operators acting on the real axis and defined by kernels

KT (λ,µ) =
√

ϑ(λ)
sin x(λ − µ)

λ − µ

√
ϑ(µ), (92)

and

A+
T (λ, µ) =

√
ϑ(λ) e−ix(λ+µ)

√
ϑ(µ). (93)

At zero temperature, both operators act on the interval [−q, q] and their kernels are

K(λ,µ) = sin x(λ − µ)

λ − µ
, A+(λ, µ) = e−ix(λ+µ). (94)

The commutation relation (13) shows that〈
�A(−x)�

†
A(x)

〉
T

= eiπκ
〈
�

†
A(x)�A(−x)

〉
T

+ δ(2x). (95)

This means that in order to prove the equivalence with the Lenard formula, we have to show
that

G+(κ, x, T ) ≡ ∂

∂α
det

(
1 − (1 + eiπκ)

π
K̂T + α

eiπκ

2π
Â+

T

)∣∣∣∣
α=0

= eiπκ
〈
�

†
A(x)�A(−x)

〉
T
, (96)

where
〈
�

†
A(x)�A(−x)

〉
T

is given by (89). For a general integral operator with kernel V , one
of the useful expressions for the Fredholm determinant is

ln det(1 − γ V̂ ) = −
∞∑

n=1

γ n

n
Tr V n.

13
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Making use of this formula, we obtain

G+(κ, x, T ) = eiπκ

2π
Tr
[
(1 − γ K̂T )−1Â+

T

]
det(1 − γ K̂T )|γ=(1+eiπκ )/π . (97)

Denoting as f +
−(λ) the solution of the integral equation

f +
−(λ) − (1 + eiπκ)

π

∫ ∞

−∞
KT (λ,µ)f +

−(µ) dµ =
√

ϑ(λ) e−ixλ, (98)

we can rewrite (97) as

G+(κ, x, T ) = eiπκ

2π

∫ ∞

−∞
e−ixλf +

−(λ)
√

ϑ(λ) dλ det(1 − γ K̂T )|γ=(1+eiπκ )/π . (99)

We will now show that

det(1 − γ K̂T ) = det
(
1 − γ θ̂+

T

)
, (100)

where the operator θ̂T is described by equations (86) and (87), and γ = (1 + eiπκ)/π . Direct
and inverse Fourier transforms of a function g can be defined to include as integration measure√

ϑ(λ):

g̃(λ) = 1

2π
√

ϑ(λ)

∫ ∞

−∞
dξ eiλξg(ξ), g(ξ) =

∫ ∞

−∞
dλ
√

ϑ(λ) e−iλξ g̃(λ). (101)

With this definition, taking the Fourier transform of the integral equation

g(ξ) − γ

∫ x

−x

θT (ξ − ξ ′)g(ξ ′) dξ ′ = G(ξ), (102)

we obtain

g̃(λ) − γ

∫ ∞

−∞
KT (λ − µ)g̃(µ) dµ = G̃(λ). (103)

Coincidence of the two equations implies the equality (100) of the determinants.
The final step in proving the equivalence of equations (89) and (91) is to show that

�+
T (x,−x) = 1

2

∫ ∞

−∞
e−ixλf +

−(λ)
√

ϑ(λ) dλ. (104)

The Fourier transform of the equation defining the resolvent kernel �T

�+
T (ξ,−x) − (1 + eiπκ)

π

∫ x

−x

θT (ξ − ξ ′)�+
T (ξ ′,−x) dξ ′ = θT (ξ + x) (105)

gives

�̃+
T (λ,−x) − (1 + eiπκ)

π

∫ ∞

−∞
KT (λ − µ)�̃+

T (µ,−x) dµ = 1

2
e−ixλ

√
ϑ(λ). (106)

Comparison of this equation with the definition of f +
−(λ) (98) shows that

�̃+
T (λ,−x) = 1

2f +
−(λ). (107)

Taking the inverse Fourier transform of (107) proves (104). Thus, we have shown that for
x ′ > x, the Lenard formula (89) is equivalent to the result (91) for the static field correlator
that follows from the direct summation of the form factors.

14
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4.2. The static correlator
〈
�A(x)�

†
A(−x)

〉
T

In this case, the proof of the equivalence of the two approaches is very similar to what was
just discussed for x ′ > x. Equations (78) and (83) show that the static field correlator is

〈
�A(x)�

†
A(−x)

〉
T

=
(

δ(2x) +
∂

∂α

)
det

(
1 − (1 + e−iπκ)

π
K̂T + α

e−iπκ

2π
Â−

T

)∣∣∣∣
α=0

, (108)

where K̂T is given by (92) and

A−
T (λ, µ) =

√
ϑ(λ) eix(λ+µ)

√
ϑ(µ). (109)

From the commutation relation (13) we see that〈
�A(x)�

†
A(−x)

〉
T

= e−iπκ
〈
�

†
A(−x)�A(x)

〉
T

+ δ(2x), (110)

so we have to show that

G−(κ, x, T ) ≡ ∂

∂α
det

(
1 − (1 + e−iπκ)

π
K̂T + α

e−iπκ

2π
Â−

T

)∣∣∣∣
α=0

= e−iπκ
〈
�

†
A(−x)�A(x)

〉
T

(111)

where
〈
�

†
A(−x)�A(x)

〉
T

is given by equation (89). Similarly to the discussion in the previous
section, we can rewrite G− as

G−(κ, x, T ) = e−iπκ

2π

∫ ∞

−∞
e+ixλf −

+ (λ)
√

ϑ(λ) dλ det(1 − γ K̂T )|γ=(1+e−iπκ )/π , (112)

where f −
+ (λ) is the solution of the integral equation

f −
+ (λ) − (1 + e−iπκ)

π

∫ ∞

−∞
KT (λ,µ)f −

+ (µ) dµ =
√

ϑ(λ) e+ixλ. (113)

The equality of the Fredholm determinants of the operators K̂T and θ̂T was shown in the
previous Section, so it remains to prove that

�−
T (−x, x) = 1

2

∫ ∞

−∞
e+ixλf −

+ (λ)
√

ϑ(λ) dλ. (114)

Again, taking the Fourier transform of

�−
T (ξ, x) − (1 + e−iπκ)

π

∫ x

−x

θT (ξ − ξ ′)�+
T (ξ ′, x) dξ ′ = θT (ξ − x), (115)

we obtain

�̃−
T (λ, x) − (1 + e−iπκ)

π

∫ ∞

−∞
KT (λ − µ)�̃−

T (µ, x) dµ = 1

2
e+ixλ

√
ϑ(λ), (116)

which shows that

�̃−
T (λ, x) = 1

2f −
+ (λ). (117)

The inverse Fourier transform of (117) gives the correct result (114).
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5. Conclusions

In summary, we have obtained the time- and temperature-dependent correlation functions of
fields for impenetrable 1D anyons as Fredholm determinants. The Fourier transform of the
corresponding integral equations proves the equivalence of our approach with the anyonic
Lenard formula derived previously (equation (57) of [19]) for the one-particle reduced density
matrix of anyons. The same technique can be used to obtain the multi-point correlation
functions from the Lenard formula for n-particle reduced density matrices (equation (56) of
[19]). The next step in the exact calculation of the anyonic correlation functions is to use
the determinant representation derived in this work to obtain a classical integrable system of
nonlinear differential equations characterizing these functions. These equations should make
it possible to construct the short-distance and low-density expansions for the correlators. This
will be addressed in a future publication.
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Appendix A. Anyonic form factors

In this appendix, we prove equation (36). Consider first the simple example of the form factor
F3,2:

F3,2(x) = 1

2
√

3

∫
d3y d2zχ∗

3 (y1, y2, y3)χ2(z1, z2)〈0|�A(y1)�A(y2)

×�A(y3)�
†
A(x)�

†
A(z2)�

†
A(z1)|0〉. (A.1)

If one defines

A = 〈0|�A(y1)�A(y2)�A(y3)�
†
A(x)�

†
A(z2)�

†
A(z1)|0〉, (A.2)

then successive applications of the commutation relation (13) followed by the equation (16)
give

A = 〈0|�A(y1)�A(y2)
[
�

†
A(x)�A(y3) e−iπκε(y3−x) + δ(y3 − x)

]
�

†
A(z2)�

†
A(z1)|0〉

= 〈0|�A(y1)�A(y2)�
†
A(x)

[
�

†
A(z2)�A(y3) e−iπκε(y3−z2) + δ(y3 − z2)

]
×�

†
A(z1)|0〉 e−iπκε(y3−x) + 〈0|�A(y1)�A(y2)�

†
A(z2)�

†
A(z1)|0〉δ(y3 − x)

= 〈0|�A(y1)�A(y2)�
†
A(x)�

†
A(z2)|0〉δ(y3 − z1) e−iπκ[ε(y3−z2)+ε(y3−x)]︸ ︷︷ ︸

(a)

+ 〈0|�A(y1)�A(y2)�
†
A(x)�

†
A(z1)|0〉δ(y3 − z2) e−iπκε(y3−x)︸ ︷︷ ︸
(b)

+ 〈0|�A(y1)�A(y2)�
†
A(z2)�

†
A(z1)|0〉δ(y3 − x)︸ ︷︷ ︸

(c)

. (A.3)

Performing similar transformations, we obtain

a = δ(y1 − x)δ(y2 − z2)δ(y3 − z1) e−iπκ[ε(y2−x)+ε(y3−z2)+ε(y3−x)]

+ δ(y1 − z2)δ(y2 − x)δ(y3 − z1) e−iπκ[ε(y3−z2)+ε(y3−x)], (A.4)
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b = δ(y1 − x)δ(y2 − z1)δ(y3 − z2) e−iπκ[ε(y2−x)+ε(y3−x)]

+ δ(y1 − z1)δ(y2 − x)δ(y3 − z2) e−iπκε(y3−x), (A.5)

c = δ(y1 − z2)δ(y2 − z1)δ(y3 − x) e−iπκε(y2−z2) + δ(y1 − z1)δ(y2 − z2)δ(y3 − z3). (A.6)

Substituting A = a + b + c into (A.1), we have for the form factor

F3,2(x) = 1

2
√

3

∫
d2z{χ∗

3 (x, z2, z1)χ2(z1, z2) e−iπκ[ε(z2−x)+ε(z1−z2)+ε(z1−x)]

+ χ∗
3 (z2, x, z1)χ2(z1, z2) e−iπκ[ε(z1−z2)+ε(z1−x)]

+ χ∗
3 (x, z1, z2)χ2(z1, z2) e−iπκ[ε(z1−x)+ε(z2−x)]

+ χ∗
3 (z1, x, z2)χ2(z1, z2) e−iπκ(z2−x) + χ∗

3 (z2, z1, x)χ2(z1, z2) e−iπκε(z1−z2)

+ χ∗
3 (z1, z2, x)χ2(z1, z2)}. (A.7)

Using the anyonic property (18) of the wavefunctions, and its complex conjugate:

χ∗(. . . , zi, zi+1, . . .) = e−iπκε(zi−zi+1)χ∗(. . . , zi+1, zi, . . .), (A.8)

we reduce equation (A.7) to the final expression for the form factor

F3,2(x) =
√

3
∫

d2zχ∗
3 (z1, z2, x)χ2(z1, z2). (A.9)

The calculations leading to equation (A.9) can be generalized to arbitrary N:

FN+1,N (x) = 〈�N+1|�†
A(x)|�N 〉 =

√
N + 1

∫
dNz χ∗

N+1(z1, . . . , zN , x)χN(z1, . . . , zN).

(A.10)

This result follows from equation (35) by noting that the statistical phase factors in the
commutation relations (13)–(15) of the field operators are compensated by the exchange
property (18) of the wavefunctions. This means that the pairing of the �

†
A(x) operator with

any of the �A(yj ) operators produces N + 1 identical terms in which the coordinate x is made
the last coordinate of the wavefunction χN+1. After that, the integrals over z’s and remaining
y’s can be limited to the ordered regions z1 > z2 >, . . . , > zN and y1 > y2 >, . . . , > yN

giving directly (A.10).

Appendix B. The thermodynamic limit of singular sums

In this appendix, we study the behavior of the functions defined by equations (61), (62) and
(63) in the thermodynamic limit of large length L of normalization interval. We start with
(61). In this case, the function summed over the momenta λ is sufficiently smooth, so that the
anyonic shift 2πδ′/L of the momenta becomes negligible when L → ∞, and one can pass
directly from the sum to the integral over λ:

G(t, x) ≡ lim
L→∞

GL(t, x) = 2π

L

∑
λj ∈ 2π

L
(Z+δ′)

e(λj |t, x) =
∫ ∞

−∞
e(λ|t, x) dλ. (B.1)

The regularization t → t + i0 for e(λ|t, x) = exp(itλ2 − ixλ) is implied in these expressions.
Next, we turn to equation (62). In this case, the function under the sum is no longer

smooth in the thermodynamic limit. We transform it by separating the singular part that can
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be summed explicitly:

E(µk|t, x) ≡ lim
L→∞

EL(µk|t, x) = 2π

L

∑
λj ∈ 2π

L
(Z+δ′)

e(λj |t, x)

λj − µk

= 2π

L

∑
λj ∈ 2π

L
(Z+δ′)

e(λj |t, x) − e(µk|t, x)

λj − µk

+ e(µk|t, x)

∞∑
n=−∞

(
n − κ + 1

2

)−1

.

(B.2)

In the last line here we have used equation (39). The first term in (B.2) is now a smooth
function, so as before, we can directly replace the sum with the integral, since the anyonic
shift of the momenta does not affect the value of the integral. The integral can then be
transformed as follows∫ ∞

−∞
dλ

e(λ|t, x) − e(µk|t, x)

λ − µk

= P.V.
∫ ∞

−∞
dλ

e(λ|t, x)

λ − µk

− e(µk|t, x)P.V.
∫ ∞

−∞

dλ

λ − µk

= P.V.
∫ ∞

−∞
dλ

e(λ|t, x)

λ − µk

. (B.3)

Under the natural interpretation of the sum in the second term in (B.2), it can be simplified
using formula 1.421.(3) of [21], π cot(πx) = (1/x) + 2x

∑∞
n=1(x

2 − n2)−1:

∞∑
n=−∞

(
n − κ + 1

2

)−1

= π tan
(πκ

2

)
. (B.4)

Collecting the two terms we finally get

E(µk|t, x) = P.V.
∫ ∞

−∞
dλ

e(λ|t, x)

λ − µk

+ e(µk|t, x)π tan
(πκ

2

)
. (B.5)

The function defined by equation (63) is more singular than E(µk|t, x) ((B.2). To
transform it, we use the same strategy of separating the most divergent terms that can be
summed explicitly:

Ẽ(µk|t, x) ≡ lim
L→∞

ẼL(µk|t, x) = 4

L2
cos2(πκ/2)

∑
λj ∈ 2π

L
(Z+δ′)

e(λj |t, x)

(λj − µk)2
,

= 4

L2
cos2(πκ/2)

( ∑
λj ∈ 2π

L
(Z+δ′)

e(λj |t, x) − e(µk|t, x)

(λj − µk)2

+ e(µk|t, x)
L2

4π2

∞∑
n=−∞

1(
n − κ+1

2

)2
)

. (B.6)

Defining

f (µk) =
∑

λj ∈ 2π
L

(Z+δ′)

e(λj |t, x) − e(µk|t, x)

λj − µk

, (B.7)

one has∑
λj ∈ 2π

L
(Z+δ′)

e(λj |t, x) − e(µk|t, x)

(λj − µk)2
= ∂f (µk)

∂µk

+
∂e(µk|t, x)

∂µk

∑
λj ∈ 2π

L
(Z+δ′)

1

λj − µk

. (B.8)
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Taking the limit L → ∞ and using (B.3) and (B.4) in this equation we obtain

lim
L→∞

L

2π

∑
λj ∈ 2π

L
(Z+δ′)

e(λj |t, x) − e(µk|t, x)

(λj − µk)2

= ∂

∂µk

(
P.V.

∫ ∞

−∞
dλ

e(λ|t, x)

λ − µk

)
+

∂e(µk|t, x)

∂µk

π tan
(πκ

2

)
. (B.9)

For the second term on the RHS of (B.6) we use the formula 1.422.(4) of [21] π2/ sin2(πx) =∑∞
n=−∞(n − x)−2 to get

∞∑
n=−∞

(
n − κ + 1

2

)−2

= π2

cos2(πκ/2)
. (B.10)

Collecting all the terms we have the final result

Ẽ(µk|t, x) = e(µk|t, x) +
2 cos2(πκ/2)

πL

∂e(µk|t, x)

∂µk

π tan
(πκ

2

)
+

2 cos2(πκ/2)

πL

∂

∂µk

(
P.V.

∫ ∞

−∞
dλ

e(λ|t, x)

λ − µk

)
.. (B.11)
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